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From references about Vinokurov’s previous work on mathemati-
cal foundations of electrodynamics:

"Results of V.A.Vinokurov is one of the greatest achievements
of XX century mathematical physics that has principal value for
modern phisical picture of the world."

From reference of academician A.N.Tikhonov.

"I must say I cannot follow your reasoning. ...I do not see
where you depart from classical electromagnetism you start with."

From the letter of The French Academy of Science President
Jacques Friedel to professor V.A.Vinokurov.

" ...it is spoken about development of new higher energies
accelerator construction based on Vinokurov’s discovery that is
hundred times less in size and cost than those which exist now.
Let you image an electron accelerator with radius only 30 centi-
meters near by modern 35-meters ones and a proton accelerator
with 6 meters diameter near by kilometres giant with billions
dollars price.How many pits and tunnels do not need to build,how
many forces and energy will economize ... "

Literaturnaya Gazeta,June 18,1992.

" . size increase of charged particles accelerator from
metres in the beginning of the age to hundred metres in the middle
of the age and tens kilometres in the end of the age may turn out
to be not science triumph but accelerator technology degeneration.
New discoveries can make giant constructions principally absurd.

. Alternative to proton accelerator with diametre about 30 ki-
lometres and cost $10 billions is Professor Valery Vinokurov
accelerator with 12 meters diameter and $10 millions cost."

Literaturnaya Gazeta,July 21,1993.
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Author preface

This book is English translation of the book [4],published in
Russia in 1993.1t contains the first short sketch of author’s
theory,the condensation theory,without mathematical calculations
and proofs.I named the scheme for obtaining of point particles far-
-action from continuous medium near-action as "the condensation
theory".Presented theory should be treated as mathematical elec-
trodynamics. The author fully assumes responsibility for claimed
results and methods,that is underlined by the first person

speaking from.



Introduction

I consider infinite continuous medium and its disturbances
i.e. solutions of its Euler equations that vanish in infinity. My
problem is to study asymptotic structure of these disturbances
for long distances from their centre and their asymptotic inter-
action in case,when distance between their centres is much more
than their kernels diameter.I name these disturbances by partic-
les.Particles dynamics description needs introduction of their
mass as some characteristics calculated through state function.
Moments of particles state function are introduced to describe
particles interaction.These moments give charge, spin, dipole

moment and other characteristics of a particle.



§1.Idéa1 medium and Maxwell medium

It is considered continuous medium, that fills all space
RS, with Lagrange variables. So current coordinates of medium
points is ;(t,?) with rectangular Descartes coordinates.Here t
is time,¥ € R® is supporting state coordinates, i.e. coordinates
that we use to numerate medium points.Iit is introduced the action
for time interval [a,b] and space volume V. The action is inte-

gral functional of the following kind

b

L= J JIJ 2 dxldxzdx3 dt.
a Vv
_)

5 X 9X s
Here £ = £(t,%,X, 5 Bt is a function of t, ¥, X and

partial derivatives from function ;(t,?).Function £ is named
Lagrange function density or lagrangian.l name such functions
;(t,?), for which action variation turns into zero, by extremals.
I assume that physical states of medium are extremals.

Further I narrow class of considered models and pass to
consideration of the ideal medium,answering three axioms:

I. Lagrangian ¢ is sufficiently smooth numerical function
._)

g
_)
2= ot 3X, g% . %) of 1+43+3+9+3=19 numerical arguments.

II. Medium is stationary.
I1I. Action value does not change with own medium movements.

Using Lie group technique from work [1], it is obtained
>

3
> 5
general form of lagrangian ¥t 1%, g% i g%)
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of ideal.medium in form £=¢(g( g% s g¥)).Here ) is arbitrary
function of 6 variablesaand gE(g$:g2,g3,g4,gs,gs) is 6 concrete
aX aX

polynoms of varibles 5§ and RIS

Ideal medium is, generally speaking, nonlinear. I appro-
ximate initial nonlinear medium with linear mediums ( mediums
with linear Euler equation) by approximating its lagrangian with
quadratic lagrangians in the supporting state neighbourhood. If
;;E? is the supporting state, then quadratic with J(t,?)EQ(t,?)-?

> >
approximation to functional LcX)-L(X,) is

- o ol
Lp(0) = J ”J 26 o5 o1 ) axanx, at.
a v

Here lagrangian

S
zts[g—g: %’%’t]=§[§-§]2_[(ummb’+§ g_[;g_g]z+
3 «, B=1
+§((“V+U)Z +§a§=1[au gl_jé aza ]]

is set with four constants: medium density p and elastic
constants u, v, x. Further I assume that the linear medium Euler
equations coinside with Maxwell equations system of
electromagnetic field. I get limitations for constants: v=-p,
x==f. I introduce new variables to shorten further—following
calculations. I introduce constant c=/Wp , and value x=ct,

norm action with p and get the following lagrangian

> > 2 g o5
M[g—;, gg—o]=§[[g¥o] -(rotU)Z]+
+3 aU, Uy  dUg BU,

a,g IHYOI XB *a HEE



“that I name Hagwell lagrangian.I name corresponding action by
Maxwell action and corresponding medium by Maxwell medium.

I do two simplifying steps before Maxwell medium detailed
study. At first I inroduce shortened Maxwell lagrangian

ol au . IffaU )2 2 2
no[ 23’ Xy ] E 2[[ 370] - ( rotU ) ]

and show that Maxwell action and shortened Maxwell action
coinside for action, cosidered in all space RS, and for
functions J(t,f). meeting decrease condition at space infinity
of kind |3(x0,?)| = Q{{%ﬂ. So Maxwell action extremals study is
reduced to shortened Maxwell action extremals study. At second I
introduce operator variables change 3=Bu, i. e. I express

>
3-vector-function U(xo,?), through new 4-vector-function u(xo.?)

by formula
> B Xo
U(xy, ) = u(xy,¥) - grad Iuo(xo,?)dxo
%o
and check that
Mo(Bu) = N(u),
Here N[ g% ] - is Lorentz lagrangian
3
du,. du,;
du - 1 _arl s
”[ai]‘z p (-o B;; + 058 ]a“a—.'
i, j=0
and
§ 0, 1:_;,
‘l. = 'ij = v 8 B
(1) OJ ] 911 { _%: } jtg

9
Study of Maxwell action M(U) is reduced by this way to study of

Lorentz action N(u).



-)
Approximation of ideal medium action L(X) with Lorentz
action N(u) is got as the result of executed constructions. Here
>3 >

6
X=U+X,, U=Bu, XOE?. The approximation has the form
> > >
Lloexg ) - L(x, ) = & Nwrww,

where
cb )

(2) NCu) = J J” A 5 Jax,dx,dx dx,
ca !RS

is a quadratic functional and W is a functional of third degree
degrease by u while u—0. ( xE(xo,x
in this text. )

>
So study of general action functional L(X) is reduced to

1,xz.xa) here and further

study of quadratic action functional N(u) with error of third
degree decrease by displasements for sufficiently little
displasements.

§2. Invariant properties of Lorentz action

Lorentz action of kind

[
(3) N(uw) = ”” #[ G5 Jax,ax,ax dx,
. -0 R3

lets 10-parametre group of transformations of form

Tp(u) = Gu(G(x-a)), G eO), acek,
that transforms functions u(x), diminishing in space infinity, to
functions, diminishing in space infinity and retains unchanged
value of functional (3). Here it is used the following notations:

QB) is a set of all real number matrices G dimentions 4x4,



-those meet the condition
GTeG =8

with matrix @ of k1nd (1); p is an element of Poincare group of
transformations R? that is given by matrix G=G(p) € ®) and
vector a=a(p) € R*. I.e. Tp transformations is linear represen-
tation of Poincare group P of R* space transformations.Euler
equations for Lorentz action N(u) have form

(4) Au=0,
where A is a linear differential operator of the second degree,

that transforms 4-functions u(x) into 4-functions j(x) of kind

3 2
d%u
- rl rp 1 1 03
(5) (AU)I.=. Zl 0[9 91J 7 OJ 91 ]WX—J' ’ red,o.
Ly Jo 4=

I name operator A by system basic aperator.

Lorentz action extremales are solutions of Euler equations
(4), but do not correspond, generally speaking, medium physical
states. 4-functions u(x), corresponding to medium physical
states, are such that 3-function ;(t,?), built through displase-
ment function E(XO,?)=BU is an extremal of initial action of
ideal medium, but applying operator A to them, I get 4-function
j=Au, that, generaly speaking, is not equal to zero.I name
4-function u(x) by state 4-function (function) and 4-function
Jj(x) by current 4-function (function) . It results from the form

(5) of the basic operator A, that current function meets equation

aj

x

3
(6) [ (x) = 0.

31

’ o
I name j,(x) component by charge density and J5CJys Jos Jg)

3-vector by current density. Then correlation (6) is interpreted



as continuity equation or as charge conservation law in
differential form. ,
Remark 1. Electron charge is positive for given choice of

basic operator and charge density.

§3. Particle states

Let u is a state function and j=Au is a corresponding current

function. I shall subject state function u to transformation Tp

and get ﬁETpu new function. The question arises: how are

corresponding current functions j=Au and j=Ai related? It is

~

turned out J=ij, where transformation Tp has form
(T,0 Yex) & ¢l G(x-a) ),

if Poincare transformation p € P is given by pair GeQ(8) and a € R

Transformations { Tp} too form a group of transformations

pEP
that is a linear representation of Poincare group P.
Let function u(x) corresponds to some physical state of the
_)
ideal medium, i.e. X=Bu+X¥ is an extremal of ideal medium action L

with accuracy up to norming of variables.Then function &=T u,

generally speaking, does not correspond already to ideal mzdium
physical states, as transformation Tp retains invariant of
Lorentz action,but not, generally speaking, of ideal medium
action. But,from the approximation point of view, displasement
function 3=Bﬁ remains sufficiently good approximation of some .
new physical state, because new current 4-function ]=Aﬁ=ij

retains the same property of decrease in space infinity as initial



-current function j. So I name functions T u by corresponding to

different particle physical states when ppruns through tied unit
component Pe of Poinéare group P.

I come to quasistationary description of particle, i.e. I
assume that its different physical states are well described

( and so are replaced in model) by states of kind

(7) u=Tpu,
p € Pe , and all particle evolution is reduced only to parameter
p change in representation (7) as the function of time Xy So
particle dynamics is reduced to study of parameter p € P,

dependence from time x.. I.e. I get dynamics of point on the

.
tied unit component of Poincare group. Particle states are
nurmerated by elements p of Poincare group. I name state, in which

element p is equal to unit element e, by the standard state.
§4. Agvids

I narrow class of state functions u(x) by the following way.
Let function u(x) is a 4-function of a 4-vector x, that is defined
on R I.e. u(x) is a mapping u:R*—R® If a mapping uf:R°—R*
and a vector ? € R® exist such that

u(x) = uf(?—?xo),

then I name mapping u(x) by agvidal one. Further in this
paragraph I consider only agvidal state functions and name
related particles by agvidal ones. It is not difficult to see
that an agvidal particle is a particle - wave, i.e. disturbance,

.)
spreading with constant velocity 1. Further I shall write an

10



agvidal state function in form
. >
u(x) = uf(¥-b(x)),
where b(x ) is a particle centre, defined by some way, for

example a charge centre. With that g——b(x ) -1 and it is assumed

that function uf(®) of three variables has a centre in zero.
Analogical representation through function of three variables
will be true and for a related current function
j(x) = Jf(?-b(x 13

Everywhere further I denote transition from function of four
arguments Xx,.X,.X,, X, to related function of three arguments
X, X5 Xy for agvidal functions by addition of letter f to
function simbol.

Transformations rules for functions u(x) and j(x) give
transformation rules for functions uf(¥) and jf(¥). What form
have these last rules?

1
Let us introduce 4-vector 1![ 7 ] of particle velocity by
adding of zero component to space velocity components. Poincare

transformation at point xeR* will be written in form
p(x)=G(x-a), G € Q(8), aeckR,.

where Qe(B) is the tied unit component of Lorentz group. Every

matrix G € ﬂe(e) can be written with help of vector B e R

such that |B|<I and ortogonal matrix Q € SO(3) in form

(8) G = G4Gg,
where Gt' GS are real number matrices 4x4. Matrix
1000
(9) 6= 19 o
0
Matrix

11



->T
£, £

(10) Gt =1 -
-£ B
where &, = ———L———, E ———3——— B=|B|, and B is a matrix 3x3
v 1-p? v 1-p?
with elements
Bya = Bya * [ ] Bz’ v« € I3

I shall name representation (8) by left represéntation of Lorentz
matrix G.
Let us introduce the matrix
% ST

(11) R= (E+1'B )BQ

with determinant
3
det (R )= 1,8 = § 1,¢;
i=0

If a = Tp(u) uj= Tp(j) then
if(2) = Gluf(R?),
JER) = G Ljf(RR).

Velocity 4—v¢ctor is transformed by rule
= —L__ ¢,
(G 1),

It results from here that
(i,l) (1-1 ) = 1-1

and, in particular, value 1-?2 has the same sign in all particle
states. So all particles break up into three classes:

1) underlights - while 1-1 >0,

2) ligts - while 1—72=o,

3) superlights - while 1-;2<0.

I name state function u(x) by Lorentz one if the condition is

12



fulfilled

du au1 du, 6u3
- + + = 10
ax, "~ | 9%, 9x, " Oxy ‘

One-to-one relation between state functions uf(¥) and current
functions jf(¥) takes place for Lorentz agvidal particles while
meeting some regularity conditions.

In every state let us introduce a matrix 4x4 of form

ST
L -l
D=1} > i
=) Bs

and a quasi-current function
(12) jt=bj,
%
where 1 is particle velocity in this state, E3 is a unit matrix

3x3.While state changing a quasi-current function is transformed

by rules
(13) JE(R) = det (R7') jtf (RD),
(14) FIE() = R jtE(RR).

ey
So densities of quasi-charge jtfo and 3-quasi-current jtf is

transformed independently. Besides that if quasi-charge
(3-quasi-current) density is equal to zero in one state then it
is equal to zero in all states. So I introduce notion of a
kiperal particle, that has qﬁasi—charge density jtf0=0, and a
scalar particle, that has 3-quasi-current density 3??=0.
Charge conservation law, that is fulfilled for every current
function j(x), gives for quasi-current 3-function 3??(?) the
correlation
div It?(?) = 0.
Existance of a spine function ;?(?) follows from it such that
Jth(3) = rot sf(d).

The charge and the spine of particle are defined accordingly

13



by formulas

e = IIJ jo(x) dxldxzdxs,
R3

-3
S = J” 2(x) dx,dx,dx..
IRS

Charge e of agvidal particle is constant for time and does not
depand from particle state. Spin g of agvidal particle is
constant for time, but depends from particle state.

Every nonlight agvidal particle is decomposed by the only
way as sum of a scalar particle and a kiperai one.

Agvid condition for an underlight particle is equivalent to
existence of the rest state, such that current 4-function j(x)
does not depand on time Xy

Particle scalarity means that current function has form
j(x)=1jo(x), where 1 is velocity 4-vector.

An underlight agvidal particle is kiperal if and only if its
charge density is equal to zero j (x)=0 in a rest state.

Quasi-current function jt has such odd before current
function j, that their time and space components transform
independently while state change. However transformation from
current function to quasi-current function has such vice, that
matrix D in formula (12) is degenarated when |T|=1 as
det(D) = 1-|f|2, and value j is not expressed through value jt.
So I introduce pseudo-current 4-function js, consisting from
charge density jsoEjo and pseudo-current 3-vector j =jT. Then

Jjs = 4j,

14



where matrix

[ 1000 ]
= >
-] E3
and
J= A—ljs'
where
i [ 1000 ]
A =1~
1 E3

Pseudo-current function jsf is transformed already according to

the rules
> —>
jsf () = (det (R))jsf,(RR) + { & Jsf (RX) Y,

s ‘ —
jsf () = R! jsf (RX).

§5. Condensation procedure

So I introduced two approximations for sufficiently little
disturbances of continuous medium:
1) initial action of ideal medium is approximated with quadratic
Lorentz action;
2) medium physical states are approximated with help of state
4-functions of kind Tp(u). Here u is a standard state
4-functions, p is an element of the tied unit component P _ of
Poincare group.

Let u’ and u” are two state 4-functions, corresponding to
two physical states of ideal medium. Then their sum u’+u”,

generally speaking, does not cosrespond to physical state of

15



ideal medium, because ideal medium action L is not quadratic,
generally speaking. But Lorentz action N is quadratic and sum of
its extremals is an extremal too. I take the following assumption
of approximation - I assume that the sum
(15) u= Tp,(u’) + Tp”(u”)
gives approximation for an ideal medium extremal if parameters
p’, p” are taken from extremality condition of Lorentz action
N(u).

Let us see Lorentz action (2). Internal integral upon space

gives Lagrange function
(16) n(u) = IIJ x[ du ] ax,ax,ax,.

Let us introduce bilinear functional ni(u’,u”) of kind
(17)  ni(u’,u*) = JJI (« - ek191J+ 9§ e:)g;% ;;% dx, dx,dx..
R3
It is true represantation for Lagrange function with help of
functional (17):
n(u’ + u”) = ni(u’,u’)/2 + ni(u’,u”) + ni(u”,u”)/2.

I name the value

m(u) = ni(u,u)/2 = n(u)
by mass of particle (system) with state function u. I.e. mass is
value of Lagrange function (16) for this state. I name functional

ni(u’,u”) by interaction functional.

Taking standard states of two particles u’ and u” and

16



calculating Lagrange function n(u) according (12, 13), I get

Lagrange function
(18) n = m(x,p‘,u') + ni(x,, p’,p”,u",u”) + m(x,,p”, u")

as a function of elements p’ and p” from group Pe. Further I

consider variational problem with fixed boundaries for particle
-> >

centre vectors b’(xo) and b”(xo) and for the functional

bec
- '] : ' " "
L= f (m(x,,p') + ni(x,,p".,p )+ n(x,,p ))dxo.
ac
> >
db’(x,) db”(xo)
Expressing particle velocities and through
dx0 dx

parameters p’ , p” accordingly, I come further to Euler equations
system for built variational problem.

If a particle is agvidal its mass is equal to
..)
m01/|-1 - 12' ’

a
where m, is constant, ! is a vector of particle velocity.

Interaction functional
(19) ni(u’.u”) = nit( ;” = ;’)
for agvidal Lorentz particles, having some regularity properties
of function uf(¥) behaviour ("natural" particles in my terms).
Here nit(¥) is a function, given on R®, which Fourier

transformation is

17



(20)
(*)

© Valery A. Vinokurov, 1993
A > -> A~ A
nit(#) =[(?72- an,d <am, Ry G, jEre-d) - u

RICIE TR TR it/ [ - a,»° @ <1 )

> > A A
Here 1’, 1” are particles velocities; jf‘(%), jf“(%).- are

Fourier transformations of current functions jf’(¥), jf“(%).
If there are k interacting particles with state functions

B0 paus u™ Bhen by analogous way I get Lagrange function

n = i m(x, p', u') + ¥ nicx,, p', pl, u', ud).
i=1 1=5i<j=k
So Lagrange function getting for agvidal particles is
reduced, in force of foresaid, to calculation of function nit(¥)

for twin interactions of particles.

(*) Every formulas in the text, that is framed and marked by
star, should be considered as an individual complete work, which
author rigts belongs to the author Valery A.Vinokurov. All their
records in any simbols on any materials should be deemed as
translations if functional dependence and physical sence are
remained. The rights of the author extend too upon all derivate
expressions obtained from them by mathematical operations. Use or
reproduction these formulas is possible only with the author

permission.

18



§6. Asymptotic description of particles and

interactions

I name space area, where current function differs from zero
essentially, by particle kernel. Considering particle field when
distances from the centre is long in comparison with particle
kernel dimensions, I approximate current function jf(X) with a
corresponding distribution with point support in zero. I name
this distribution by vlavin. Particle approximation with vlavin
is equivalent to approximation of its Fourier transformation j?(ﬁ)
with Tailor polynom of corresponding degree with centre in zero.

I use the same device when calculating interaction function
of two agvidal particles nit(¥). Namely I sibstitute in formula
(20) instead of Fourier transformations of current functions
j?'(ﬁ) and j?ﬂ(ﬁ) their Tailor polynoms tm(j?')(ﬁ) and
tk(j?”)(ﬁ) with centre in zero. Got approximate distribution
nita(?) gives approximation of function nit(¥) for distances that
is much longer than particle kernel sizes. Calculation of
function nita(?) is made by formula (20) with using the
technique of variables change in distributions, that is produced
in [2].

Every vlavin can be assembled from finite number of
elemantary vlavins, namely, from such generalized particles for
which Fourier transformation is homogeneous polynom of degree m,
named by vlavin order. So I introduce a set of elementary
vlavins, from which it is possible to get asymptotic
approximation as particles fields - by summing elementary vlavin
fields so their interactions - by summing twin interactions of

elemantary vlavins. Fourier transformation of pseudocurrent

19



function, that is twice differentiable in zero, can be written in

form

Jsf ) = e+ i, W - QA D+ o(F)

J%P (%) = 1 [3,8] - [FB,R] + o(H),

where I name constants by the following way:

e € R is a charge; deR is a dipole moment; Q, is a symmetric
matrix 3x3 - a quadr; E € R® is a spin; F is a matrix 3x3 which
track is equal to zero - a quin. Values e, Z, QV, g, F are
particle characteristics,transforming by the following way when

state changes:

(21) e =e,
> 1 3
(22) $= s RS,
(det (R))
(23) B = B+ L [
det(R) '
(24) ¥ = —Li— RTRRTYT,
(det (R))

£ o
(25) B = RNQ, + —L— (Sw (OF + (Sv (OF)THR .
2det (R)

e d
Here R is a matrix of form (11); € is a vector, introduced in

>
representation (10) of matrix Gt; Sw(€) is an antisymmetric matrix

of form
> 0 -£ £
(26) SW(E) = N
O g 0o g
€, £ 0

I define elemantary vlavins so that everyone from them

20



represents one from introduced particle characteristics. Vlavin
name begins from the syllable "vla": vlascale, vladip, vlakiper,
vlasarm, vlanur, vlamar.

Underlight particles characteristics, introduced
before, such as charge, dipole moment, spin, quadr, quin - can
have any meaning. The following three vlavins suffice to have
approximation with second order error for any underlight agvidal
particle:

1) vlascale - scalar vlavin, representating the charge e with
j?o(ﬂ) = e

5
2) vladip - scalar vlavin, representing the dipole moment d, with
= 1d, 0 .
3) viakiper - kiperal vlavin, representing the spin S, with
j?f (#) = i [3,7;].

Light and superlight particles characteristics can not
already have arbitrary magnitude but meet certain additional
limitations, resulting from finitity conditions for mass and

energy. So let us pass to consideration of conservation laws.

§7. Conservation laws

I have untroduced action of ideal medium that lets,
according to definition, 13 - parameter group of invariant
transformations, generated by 3 - parameter group of
translations of supporting state; 3 - parameter group of
ortogonal rotations of supporting state; 3 - parameter group
of translations of current state; 3 - parameter group of

ortogonal rotations of current state; 1 - parameter group of

21



translations in the time. Every 1 - parameter invariant
transformation generates, according to Noether theorem of the
variational calculus,-local conservation law, worded in
differential form as turning into zero of certain 4-divergence;
So initial action of ideal medium has 13 independent local
conservation laws, letting simple physical interpretation. If I
want now to consider solutions those are little medium
disturbances, vanishing in infinity, then I have to restrict a
group of solution invariant transformation by the condition that
a solution, vanishing in space infinity, stays a solution,
vanishing in space infinity after transformation. This condition
bans displasements of current state with a constant vector,
coordinates rotations in support and current states and results a
7-parameter group of invariant transformations. Got 7 local
conservation laws have simple physical sence: 3 laws of

iumpulse conservation, 3 laws of moment conservation, 1 law of
energy conservation.

When certain additional conditions, a local conservation
law, written in differential form, generates a global conser-
vation law of certain value, wording in the form of magnitude
constancy of certain integral upon all space. Different local
conservation laws can give the same global conservation laws with
that.

I had approximated ideal medium action in displasements with
Maxwell action, shortened Maxwell action, Lorentz action and then
passed to condensed action. A 7-parameter group of invariant
transformations is conserved with that for agvidal particles for
all these actions with natural physical interpretation of

corresponding conservation laws. The question arises: how do

22



conservation laws of impulse, moment and energy correlate for all
these five systems? '

I state the following for the example of energy conservation
law. The energy local conservation laws for ideal medium action,
Maxwell action, shortened Maxwell action, Lorentz action are dif-
ferent all. The energy global conservation laws for Maxwell
action and shortened Maxwell action coinside and are approxima-
tion of the energy global conservation law for ideal medium. The
energy global conservation law for Lorentz action, the energy
global conservation law for shortened Maxwell action and the
energy conservation law for condensed action are different all.
The global energy conservation law for Lorentz medium is not
approximation of the global energy conservation law for ideal
medium.

Further I name energy value for shortened Maxwell action by
physical energy. Demand of physical energy finity for agvidal
particle: 1) does not give additional limitations for particle
characteristics in underlight case; 2) results turning into zero
of charge e = 0, and spin g = 0 and ortogonality of vectors of
dipole moment ; and velocity Y in light case; 3) results equali-

ties: e = 0, ; =0, g = 0 and special form of quin and quadr
in superlight case.

I introduce a vlasarm for approximation of a light particle
with finite physical energy. A vlasarm is a scalar vlavin with

Fourier transformation of pseudocharge density
A > ) > >
jsfy(m) =i {d,n},

that represents "in pure form" one characteristic, namely dipole
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> ’ > >
moment d, and besides scalar product ( d, 1 Y= o
Transformation'law for dipole moment with particle state change,

namely formula (23),tékes form in this case:
2> i
d= K,

I introduce new characteristics: squadr ¢ € R and vequin
g € R® for superlight particle of finite physical energy.Accord-
ingly I introduce a vlanur and a viamar for main order apporoxi-
mation of a superlight agvidal particle.Vlanur is a scalar super-

light vlavin with Fourier transformation of pseudocharge density
A - > 2
jsfom = - £ o n Y,

> >
where Qv = ¢ Ko(l) and Ko(l) - is a matrix 3x3 of form
> > >

Ka(l) = E3 - 1 1".Vlamar is a kiperal vlavin with Fourier trans-

formation of pseudocurrent 3 - function
g > >
Jjsf(m) = -[F m, 0],
d -> >
where matrix F = Sw(h) Ke(l) is multiplication of matrix Ka(l)

and matrix (26). Transformation laws for squadr and vequin with

particle state changing have form

¢ =c,
3 >
h=—d . gip
det (R)
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§8. Scales and their interactions

It turns out that approximation of underlight agvidal part-
icles with elementary vlavins of zero order,namely vlascales,
suffices to get classical electrodynamics of charges and currents.

A vlascale has Fourier transformation of current function
A >
jf(n) = el,

where e is vlascale charge, 1 is vlascale velocity 4 - vector.

Interaction functional for two vlascales is equal to

I >
ni(u’,u”) = e'e” an(Bl, B”: b7 - bl)’

according to (17,19,20), where vin(g’, E”, ;) is the function
of three vector arguments,presented in [3].

I introduce notion of a scale.A scale is an underlight
scalar sphere - symmetric agvidal particle for which
approximation of its interactions with other particles is ordered
by a vlascale.So a system of two interacting scales is described

with Lagrange function

——— > > o >
(27) n - ml 1 o (BI)E + eleI' Vin(Bl‘ Bll' bll _— bl) +
e V1 - (B2,

Accordingly a system of k interacting scales is described with

Lagrange function
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(28) n=Ynv1- @)+ Y] e

i=1 151< <k

. > >
" er1n( Bi, BJ. b. = b, )

Going to limite with number of particles k — o, I get in limite
a lagrangian for scale interaction with external field, generated
by continuously distributed system of charges and currents.

Function vjn(g’, E”, ;) has the property that if velocity
E” = 0, then function vin(g', 0, ;) = 1/(4m|¥|), i.e. it coin-
cides with Cuolomb potential.So my theory gives description,coin-
ciding with classical one for charge movement in electrostatic
field.

E > >

Approximation of the function vin(B’, B“, y) with Tailor

pelynom of second order by arguments E’, E” with zero centre

gives the function

> 2 > o
e

jsrar. B4 oy = 1 % b g S ", y1)
viscp’, B”, y) = 1= B, B + i
il [ 21712 ]

in|

So second order approximation by velocities gives the
following Lagrange function for a scale in external field, genera-
ted by stationary distribution of charges with density jg(?) and
currents with density J(%),

>, > >
(29) n, = m(1 - B%/2) + e(p - B, A >3,

>
here ¢ - is scalar , 4 - is vector potential of external field

and
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. j ()
(30) p(%) = (1/4m ”I —J°—?— dy,dy,dy, ,

Iy - %I
RS
(31) Z(?) =(1/4m) JH % dy,dy,dy., -
R3

Formula (29) is obtained from Lagrange function (28) by geing to
limite with k — o .So classic relativistic Lagrange function,

decribing charged particle movement in external field,

>
(32) n =nvi1-@?2+ep-B A4

c

is only second order approximation with velocities for the exact
interaction law with my theory point of view.But description with
help of Lagrange function (32) is exact in case Z = 0 (electro-
static field).

Scales dynamics differs from classical relativistic charge
dynamics in general case what I shall demonstrate in two examp-
les: in scale movement in constant magnetic field and in centri-

cally symmetric movement of two scales with equal masses.
§9.Scale movement in magnetostatic field
Following terminology earlier introduced,I name field of a
resting kiperal agvid by the magnetostatic field.Calculating in-

teraction functional for a scale and a resting kiperal agvid ac-

cording to formula, (20),I get the following Lagrange function for
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a scale in field of a resting kiperal agvid
5 > >
(33) n=nv1-@?%-e$B 4,

> S>> > > d?
where value A = A(B, x) [ B = ax ] is expressed through cur-
0

—> >
rent 3-function j(x) = jf(x) of a resting particle by the formula

(*)

@ Valery A. Vinokurov, 1993

_)
5 5 Jfy
AB, %) = (1/41) ”J dy,dy,dy,
> o >
R3 A3 - D2 (B, y - 1

If a solenoid,flowed around circle by constant density cur-
rent,is taken as the second agvid,then analogous calculations
give the following expession for Lagrange function (33)

(34) (%)

© Valery A. Vinokurov, 1993

> > 2
Sl og - B ]}
1+\/1-Bi

E
[x. H]
1+v1- (B)?
_)
in this case,where H is magnetic field density inside solenoid,Bl
28

> >
A (B, x) =




is scale velocity projection on a plain,that is ortogonal vector
E .The coordinates centig is chosen on solenoid axis and axis
is chosen along vector H.

Spiral trajectories around solenoid axis exist among extre-
males of Lagrange function (33) such that absolute velocity value

>
B = |B| is constant on them.Radius of such spiral line
B,m vl - (B,)?
e i V1 - g°

r =

angular velocity of rotation

e g vl - i
w = ’

m v1- (B)?

where Bl = |§1|' Nevertheless trajectofies,not being spiral lines,
exist too.

Trajectories of more complicated kind exist for particular
case of plain movement with B" = 63 = 0 too,except for cir-
cular trajectories with centre on the solenoid axis,for which
absolute velocity value is not constant.And besides trajectories
exist for which a particle enlarges its velocity up to light ve-
locity for finite time.

Let us remark for comparison,that classical relativistic
description of charged particle movement,that proceeds from Lag-
range function (32),results Lagrange function of form (33), where
Value Z = Z(O, ;) = é [;, E]. With this a particle goes along

spiral line with radius
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e H ‘/1‘- B?

r =

and constant angular velocity
= LA~ B
m

for any initial data.

§10. Centrically symmetric movement of two scales with

equal masses

Lagrange function (27) for case of a system of two scales with
equal rest mass m, leti cengrically symmetric movegfnts wZ}h par-
ticles radius-vector b” =-b’ and velocity vector B” = - B’.Lag-
range function is equal to the following expression in this case

for polar coordinates (r, ¢) 1in the movement plain

(35) sim = 2u0v/1 - (r%+ r?¢?) +

2 pli s § B
Bt == ﬁzy-]'(l - 1% 72,

where the point above simbol means differentiation by normed
time Xy

Lagrange function (35) lets rotation orbits with r = const.
Trajectory radius r, system moment M, system energy ¥ and system

mass mg depand from the absolute velocity value B = |r ¢| on such
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circular trajectory by the following way:

(36) rou g, 268°-1
16mm, B*(1 - B%)

(37) PITReY .. .. —
8n 3/1 _ Bz
(38) #=2nv1- g%
2
(39) m = 2m0§g5'—11-\/1 - 2.

If charges have different sign e‘e” < 0, then it results

from formula (36) that rotation solutions exist when
B € ]JO,-1— [.With this when velocity B varies from 0 to —,
vZ V2

then radius r varies from + o to O ,moment M varies from + o«

_ elell %
to I system energy # varies from 2m0 to mov 2 s

System mass mg varies from 2m0 to 0, when B varies from O to

-1 and from 0 go - o When B varies from i iy e

V3 v3 v2
If charges have the same sign e‘e” > 0, then it results

from formula (36) that rotation solutions exist when

B e ]‘/%,1 [. With this when velocity B varies from - to

vZ

1,then radius r varies from 0 to + o, moment M varies from

. 9&%1 to - w, energy X varies from mov 2 to 0, system mass

mg varies from + o pgo O.
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So two ideptic scales can create a stationary rotation sys-
tem when movement velocities B > ;équo only electromagnetic
2
forces suffice principally to keep identically charged particles

in atom kernels.
Besides we see in this example hot” system, having zero or ne-
gative mass ,can be built from underlight agvidal particles with

positive rest mass.

§11. Application of considered scheme to other continuous

mediums

Presented scheme for construction of point particles elec-
trodynamics from properties of the ideal medium lets generation
for constraction of point particles dynamics from properties of
arbitary continuous medium on manifold in form of the following
sequence of actions:

1) Initial action functional is approximated with quadratic
action functional in neighbourhood of supporting state.

2) Linear operator variables change is made.

3) Group G of invariant transformations of the quadratic
action in new variables is found.

4) Lagrange function,depanding on time t and element g of
group G ,is got by integration with respect to space variables.

5) Approximation of particle current function with point
support distribution is used for approximative calculation of in-
tegral with respect to space variables.

Using Lagrange mechanics language,l have learned for given
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continuous medium to build particles and study'prdperties of

their fields and their interactions,to obtain particles dynamics
as certain approximative asymptotic description of continuous me-
dium. So the problem of obtaining particles far-action have solved
as specialy for electrodynamics so and in sense of general

scheme construction.
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